

Stampa 3D di celle a combustibile e celle per elettrolizzatori

Questa è una tecnologia innovativa di deposizione intelligente di catalizzatori tramite stampa 3D modificata, progettata per rivoluzionare la produzione di celle a combustibile a membrana polimerica PEM o a ossidi solidi SOFC. Questa metodologia all'avanguardia consente di realizzare celle efficienti, anche con geometrie varie e complesse, ottimizzando le prestazioni, riducendo i costi di produzione e il CAPEX.

Con la stampa 3D modificata, è possibile personalizzare le celle, usare nuovi catalizzatori per soddisfare specifiche esigenze industriali, garantendo una maggiore flessibilità e rapidità nella prototipazione.

Investire in questa tecnologia significa posizionarsi all'avanguardia nel settore energetico, offrendo soluzioni innovative e competitive. Può essere utilizzata sia per produrre celle a combustibile che elettrolizzatori che compressori elettrochimici. E' stata inoltre testata anche per la produzione di filtri per H2.

Laboratory H2.M0.RE

Specialization Area Digitale, Energia e

Sostenibilità, Meccatronica e

Materiali

Contacts Marcello Romagnoli

Keyword Idrogeno, Additive

Manufacturing, Stampa 3D modificata, Economicità e

facilità d'uso

"Dalla progettazione alla realtà: potenzia le tue celle a combustibile con la tecnologia di stampa 3D"

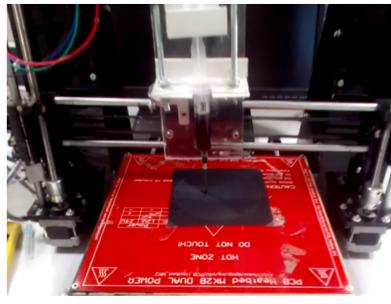



Fig. 1: Stampante 3D modificata per la deposizione di inchiostri catalitici per PEMFC. Vers. 2.0

Description

Una delle sfide chiave nello sviluppo di celle a combustibile, compressori elettrochimici per H2 e elettrolizzatori efficienti ed economici è la produzione degli elettrodi. Essi devono avere una struttura complessa per massimizzare l'area superficiale del catalizzatore, ma realizzarli con metodi tradizionali è costoso e genera molto spreco di materiale.

I ricercatori del Centro H2 MO.RE hanno sviluppato un metodo innovativo per produrre elettrodi utilizzando una stampante 3D commerciale modificata. Questo approccio combina i vantaggi della stampa 3D: precisione, flessibilità, semplicità, facilità di reperimento e costi contenuti.

Il processo prevede diversi passaggi:

- 1. Modellazione 3D virtuale dell'elettrodo da stampare, utilizzando anche software open source.
- 2. Preparazione di un inchiostro catalitico, una dispersione di particelle catalitiche in un mezzo liquido. L'inchiostro può contenere anche additivi per migliorarne stabilità e adesione.
- 3. Stampa 3D dell'elettrodo utilizzando una comune stampante 3D opportunamente modificata. Questo metodo permette di realizzare strutture complesse. Rispetto ai metodi convenzionali, offre inoltre vantaggi in termini di personalizzazione, prototipazione rapida e riduzione degli sprechi di materiale, contribuendo allo sviluppo di tecnologie energetiche più efficienti e sostenibili.

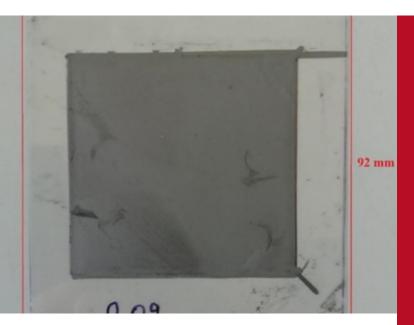
Innovative aspects

- 1. Possibilità di realizzare elettrodi con strutture complesse utilizzando inchiostri catalitici. Questo approccio supera i metodi tradizionali, riducendo i costi e gli sprechi di materiale.
- 2. Grazie alla modellazione 3D, è possibile personalizzare gli elettrodi in base a specifiche esigenze industriali, permettendo una maggiore adattabilità e ottimizzazione nello spazio disponibile per i sistemi energetici.
- 3. La tecnologia si basa su componenti facilmente reperibili e a basso costo, rendendo l'intero processo produttivo più accessibile. Questo approccio consente anche alle piccole e medie imprese di adottare soluzioni innovative senza dover affrontare investimenti elevati.
- 4. L'integrazione della stampa 3D nel processo produttivo consente una prototipazione rapida e una produzione più snella, facilitando l'implementazione di nuove tecnologie nel settore delle celle a combustibile.

Questi aspetti non solo migliorano l'efficienza e la sostenibilità delle celle a combustibile, ma rappresentano anche un passo significativo verso l'innovazione nel campo delle tecnologie energetiche

Potential applications

La tecnologia di deposizione intelligente di catalizzatori tramite stampa 3D offre la possibilità di uso in vari settori.


Produzione massiva di celle a combustibile a membrana polimerica (PEMFC) e a ossido solido (SOFC) e di compressori elettrochimici.

Produzione di celle per elettrolizzatori.

Produzione di compressori elettrochimici e i filtri per

Produzione di celle per batterie.

Involved partners

In questa fase nessuna azienda è stata coinvolta. Sono stati acquistati prodotti commerciali, ma sono benvenute aziende che volessero sviluppare un prodotto assieme al Centro H2 MO.RE.

Implementation Time

Meno di un anno di lavoro di 4 persone.

Technology Readiness Level

TRL 6 - tecnologia dimostrata in ambiente rilevante

Exploitation

- -Ottimizzazione dei processi di produzione e realizzazione di una stampante commerciale
- Partnership con aziende per implementare la tecnologia in applicazioni reali
- Offrire corsi per formare professionisti sull'uso della tecnologia
- Sviluppare una strategia di marketing per promuovere i benefici della tecnologia
- Ottenere certificazioni di qualità

Application example

Realizzazione di celle PEM attraverso la deposizione di inchiostro catalitico mediante stampa 3D modificata

Questa tecnologia innovativa combina la precisione e la versatilità della stampa 3D con i suoi bassi costi e la facilità di reperimento della tecnologia. Essa permette di realizzare produzioni anche massive di celle, di varia forma e dimensione, con costi impiantistici e spreco di materiali molti inferiori ad altre tecniche. La produzione di elettrodi avanzati per celle PEM attraverso la stampa 3D offre numerosi vantaggi: Processo di Produzione

- 1. Modellazione 3D: Il design dell'elettrodo viene creato virtualmente. Può essere ottenuto utilizzando anche software open source. Il disegno virtuale viene trasformato in un file gcode.
- 2. Preparazione dell'Inchiostro Catalitico: Viene usato come inchiostro catalitico una dispersione di nanoparticelle di Carbonio e Platino in un mezzo liquido, con gli additivi necessari. Il metodo di applicazione è poco sensibile alla reologia degli inchiostri.
- 3. Stampa: Una stampante 3D modificata deposita l'inchiostro catalitico seguendo il file in formato gcode, creando strutture anche complesse. Vantaggi
- Personalizzazione. La geometria dell'elettrodo può essere ottimizzata per massimizzarne l'efficienza.
- Riduzione dei Costi: L'uso di parti commerciali a basso costo, un processo semplificato e l'azzeramento degli sprechi riducono significativamente i costi rispetto ai metodi tradizionali.
- Rapidità di Prototipazione: I prototipi possono essere prodotti rapidamente per testare e migliorare i design.

I risultati mostrano che la stampa 3D può produrre elettrodi con proprietà catalitiche, aprendo la strada a celle più efficienti ed economiche.

H2.MO.RE

Centro Interdipartimentale di Ricerca e per i Servizi nel settore della produzione, stoccaggio ed utilizzo dell'Idrogeno

Website https://www.h2more.unimore.it/

Director Marcello Romagnoli

Published on 13/09/2024

Il Centro svolge una attività di promozione, coordinamento di studi e ricerche interdisciplinari nel campo della produzione, stoccaggio, trasporto, utilizzo dell' H2. Pone grande importanza al dialogo con le imprese che necessitano di consulenza, servizi e collaborazioni per lo sviluppo di nuovi prodotti, processi e per il miglioramento di quelli esistenti. è attivo nel progettare e realizzare percorsi formativi per il personale delle aziende e per le scuole di ogni ordine e grado. è formato da più di 100 ricercatori di cinque diversi dipartimenti di Unimore, con competenze nelle scienze chimiche, fisiche, ingegneristiche, dell'educazione.

- progettazione e sintesi di polimeri per celle a combustibile(FC) a bassa temperatura
- caratterizzazione dei materiali utilizzati nelle tecnologie dell'H2
- caratterizzazione elettrochimica e spettroelettrochimica
- · cogenerazione mediante FC
- produzione di FC, elettrolizzatori e compressori elettrochimici per l'H2
- raffreddamento di sistemi di generazione basati su FC
- produzione di H2 verde
- · stoccaggio dell' H2
- misure di conducibilità elettrica e di permeabilità ai gas
- simulazioni fluidodinamico/elettrochimiche di FC, elettrolizzatori e compressori elettrochimici oltra ai loro sistemi di raffreddamento
- metodologie didattiche per l'insegnamento dell' H2
- studio di catalizzatori
- ricerca e sviluppo di convertitori elettronici ad alta efficienza dedicati all'accoppiamento di stack FC con sistemi di accumulo elettrochimico

