

Ottimizzazione energetica di macchine elettriche sincrone per elettrodomestici

I requisiti di efficienza degli elettrodomestici sono sempre più stringenti in risposta alla crescente richiesta globale di risparmio delle risorse energetiche. Questo processo ha implicato il ricorso a nuove tecnologie e lo sviluppo di tecniche all'avanguardia per migliorare l'efficienza dei prodotti, come la movimentazione del cesto delle lavatrici.

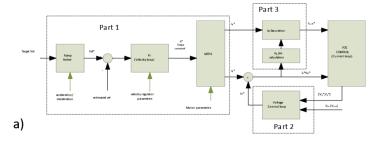
L'obiettivo dell'attività è stato lo sviluppo di un controllo ottimizzato per i motori sincroni a magneti permanenti interni (IPM) da utilizzare al posto dei tradizionali motori asincroni nelle lavatrici ad uso domestico. Tale soluzione ha consentito di aumentare l'efficienza complessiva dell'applicazione e di diminuire i costi, tuttavia si è dovuto accettare una maggiore complessità degli algoritmi di controllo. Le principali criticità affrontate sono state: sviluppo di un controllo sensorless in grado di erogare la coppia nominale a velocità nulla e ottimizzazione delle traiettorie MTPA e deflussaggio per massimizzare l'efficienza.

Laboratorio RAW POWER

Area di Enei specializzazione

Energia e Sostenibilità

Keyword


Macchine Elettriche a Magneti Permanenti, Controllo Sensorless, Strategia Maximum Torque per Ampere, Strategie in Deflussaggio

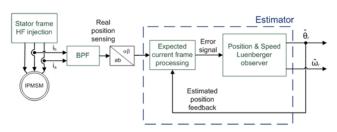

"Strategie di controllo per il risparmio energetico"

Fig. 1: Prodotto esempio di applicazione (Image by Steve Buissinne from Pixabay)

Descrizione

b)

Per l'implementazione del controllo sensorless sono stati definiti due algoritmi: il primo con iniezione di un segnale ad alta frequenza preposto all'identificazione della posizione rotorica, da rotore fermo fino a qualche centinaio di giri al minuto; il secondo è utilizzato per velocità più elevate (fino a 18.000 rpm) e sfrutta la stima delle forze contro-elettromotrici partendo dal modello matematico del motore elettrico. Il secondo metodo è inefficace a basse velocità perché l'ampiezza delle forze contro-elettromotrici è proporzionale alla velocità di rotazione del rotore.

L'algoritmo con l'iniezione di segnale sfrutta l'anisotropia della macchina elettrica IPM per stimare la posizione rotorica anche a velocità nulla, rendendo così possibile l'erogazione della coppia nominale in modo efficiente fin dalla partenza.

Una volta sviluppato il controllo vettoriale sensorless, si è passati all'implementazione della strategia MTPA con i parametri di macchina; tale strategia è in grado di fornire il giusto contributo di corrente di asse diretto per sfruttare la coppia data dall'anisotropia della macchina (i.e. coppia di riluttanza). La strategia di deflussaggio è necessaria per raggiungere i regimi di rotazione di 18.000 rpm; per l'applicazione è stato implementato un controllo in anello chiuso in grado di aumentare il contributo di corrente sull'asse diretto se viene raggiunto il limite di tensione applicabile.

Fig. 2: a) Schema a blocchi del sistema di controllo implementato; b) schema a blocchi dell'osservatore per la stima della posizione rotorica con iniezione segnale ad alta frequenza


Aspetti innovativi

Gli aspetti innovativi del sistema sviluppato sono: il controllo sensorless del motore con iniezione di segnale ad alta frequenza che permette di avere una stima della posizione rotorica alla partenza del cesto della lavatrice, cioè a velocità nulla, e l'ottimizzazione delle traiettorie delle strategie di controllo a basse velocità (MTPA) e ad alte velocità (deflussaggio) per massimizzare l'efficienza complessiva del sistema.

Applicazioni

Il controllo sviluppato può essere utilizzato in diverse applicazioni in ambito industriale; in particolare laddove è indispensabile una soluzione economica, efficiente e con buone prestazioni anche a basse velocità di rotazione.

Partner coinvolti

Raw Power S.r.l. e Candy Hoover Group S.r.l.


Tempi di realizzazione

9/10 mesi

Livello di maturità tecnologica TRL 7 - prototipo dimostrativo in ambiente operativo

Valorizzazione applicazione

Il controllo sviluppato sarà adottato su lavatrici domestiche commerciali.

Esempio di applicazione

Azionamento per motore brushless IPM utilizzato per la movimentazione del cesto di lavatrici domestiche

Il controllo è stato sviluppato e testato su applicazioni per il settore del bianco, in particolare su lavatrici ad uso domestico. L'applicazione è caratterizzata da vincoli molto stringenti in termini sia di costi che di prestazioni, infatti sono richieste ottime prestazioni alla partenza per riuscire a muovere anche carichi che richiedono la coppia nominale e ottima efficienza durante il ciclo di lavoro.

Grazie agli algoritmi di controllo ottimizzati è stato possibile migliorare l'efficienza delle lavatrici del 30% durante il ciclo di lavaggio il quale rappresenta il ciclo di lavoro più lungo dell'applicazione. Il confronto è stato svolto rispetto allo stesso ciclo di lavoro con il tradizionale motore asincrono.

RAW POWER

Sito web http://www.rawpowergroup.it/

Direttore Danilo David

Data 29/09/2021 pubblicazione

Raw Power Srl nasce nel 2007 come spin-off dell'Università di Modena e Reggio Emilia, dalla volontà di un gruppo affiatato di ragazzi operante nel campo dell'elettronica di potenza.

Raw Power è una PMI di progettazione e consulenza nella progettazione di elettronica di potenza per la conversione statica dell'energia, di macchine elettriche e di azionamenti per applicazioni industriali. I clienti sono assistiti dalla definizione dei requisiti, passando per le successive attività di R&D, fino alla prima prototipazione e produzione del prodotto. Raw Power offre soluzioni innovative e all'avanguardia e un supporto nel processo di certificazione.

A fianco dei servizi di progettazione, Raw Power gestisce anche un laboratorio di prova di motori elettrici (EML), dotato di tre banchi prova da 5Nm-2kW, 50Nm-12kW e 500Nm-45 kW. I servizi offerti comprendono: prove su macchine elettriche rotanti secondo la Norma EN 60034-1: 2011 + EC1: 2015, prove di efficienza dei motori elettrici secondo Norma EN 60034-2-1: 2015, prove di omologazione di motopropulsori elettrici secondo i Regolamenti Delegati R85 e R134 e prove di efficienza dei convertitori (CDM) secondo la Norma IEC 61800-9-2: 2017

La missione aziendale di Raw Power mantiene l'origine universitaria dell'azienda e punta a favorire il trasferimento tecnologico dal mondo della ricerca al mondo delle imprese. Il personale del laboratorio è formato da ingegneri con laurea magistrale e/o dottorato in elettronica, meccatronica e gestionale. Dal 2015 Raw Power è laboratorio accreditato alla Rete Alta Tecnologia dell'Emilia-Romagna.

