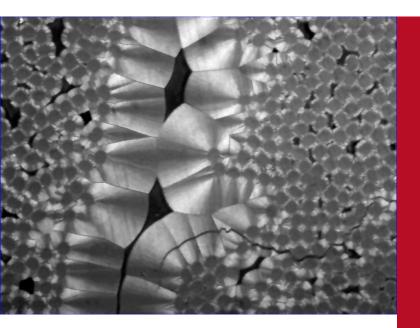


Infiltrazione chimica da fase vapore – Chemical Vapour Infiltration (CVI)

ENEA-TEMAF dispone di un impianto in scala pilota CVI per la produzione di compositi rinforzati con fibre lunghe (CFCC, Continous Fiber Ceramic Composite). La tecnologia è quella dell'infiltrazione chimica in fase vapore di preforme costituite dalla sovrapposizione di tessuti 2D di fibre ceramiche. L'obiettivo è la produzione di compositi ceramici ad elevate prestazioni per applicazioni ad alta temperatura a base carbonio e carburo di silicio (Cf/C e SiCf/SiC)

"Materiali compositi ceramici per alta temperatura" **Laboratorio** ENEA-TEMAF

Area di Energia e Sostenibilità, **specializzazione** Meccatronica e Materiali


Referenti Federica Burgio

Keyword Compositi ceramici, CVI

Fig. 1: Impianto pilota ENEA CVI/CVD

Descrizione

La tecnica di infiltrazione chimica in fase vapore consente la produzione di compositi ceramici mediante l'infiltrazione della matrice ceramica all'interno delle porosità di una preforma costituita da fibre ceramiche: il precursore gassoso della matrice, nelle opportune condizioni di temperatura e pressione, deposita direttamente la matrice solida riempiendo gradualmente le porosità della preforma fino alla sua quasi completa densificazione. Questo processo è altamente flessibile in quanto consente la produzione di diversi tipi di matrici ed è il più adatto per la realizzazione di strutture complesse, che riducono al minimo le lavorazioni meccaniche finali.

Fig. 2: Interfaccia fibra matrice in carbonio pirolitico (Py-C)

Aspetti innovativi

Tra le tecniche per la produzione dei compositi e di rivestimenti ceramici, la tecnologia CVI è quella più promettente. Il principale vantaggio rispetto agli altri processi di infiltrazione consiste nell'elevato grado di purezza e nell'alto grado di densificazione delle preforme, ottenibile grazie all'utilizzo di precursori gassosi della matrice in grado di infiltrare anche le più piccole porosità delle preforme e nell'assenza di residui organici, i cui trattamenti di eliminazione lasciano porosità residue.

Il principale vantaggio della tecnologia risiede nelle basse temperature di processo (900-1200°C), che garantiscono la non compromissione dei substrati di infiltrazione. Inoltre consente la produzione matrici ad elevata purezza, a stechiometria controllata e con minima porosità residua. I materiali che è possibile produrre, grazie alle loro eccellenti proprietà termomeccaniche, rispondono all'esigenza di alleggerimento e affidabilità del settore aeronautico/aerospaziale e di incremento dell'efficienza energetica, tematica questa sempre più urgente dal punto di vista ambientale ed economico specialmente nei settori industriali energivori "hard-to-abate".

Applicazioni

Tra i CFCC quelli non ossidici, in particolare i materiali a base di carbonio (C) e carburo di silicio (SiC), mostrano proprietà interessanti alle alte temperature, come resistenza al creep, elevata conducibilità termica, bassa dilatazione termica e resistenza agli shock termici. Per questi motivi, il loro utilizzo è proposto per la realizzazione di componenti sottoposti ad elevati carichi termici per applicazioni spaziali, quali per esempio sistemi di propulsione o sistemi di protezione termica, materiali refrattari per forni e reattori di energia, sistemi frenanti, ecc.

Partner coinvolti

 Università di Pisa, IPCF-CNR, Fricke und Mallah Microwave Technology GmbH, Fraunhofer-Gesellschaft, Università di Birmingham, Archer Technicoat Ltd, CNRS, POLITO, IRIS Technology Solutions SL, ArcelorMittal, Steinbeis Advanced Risk Technologies, Kneia S.L.

Tempi di realizzazione

12 mesi

Livello di maturità tecnologica TRL 4 - tecnologia validata in laboratorio

Valorizzazione applicazione

Lo sviluppo in ENEA-TEMAF della tecnologia CVI è essenziale per esplorare le potenzialità dei ceramici compositi e si ricercano end-user di vari ambiti applicativi (p.es. automotive, aerospazio, etc.)

Esempio di applicazione

Compositi ceramici per applicazioni ad alte temperature

Per guidare il passaggio alle energie pulite e rinnovabili, l'industria pesante necessita di materiali ad elevate prestazioni ed efficienti dal punto di vista energetico, in grado di resistere in condizioni estreme, quali temperature molto elevate ed ambienti corrosivi: il progetto CEM-WAVE propone l'utilizzo di compositi a matrice ceramica. Nell'ambito del progetto CEM-WAVE (Novel Ceramic Matrix Composites produced with Microwave assisted Chemical Vapour Infiltration process for energy-intensive industries), finanziato dal programma di ricerca e innovazione Horizon 2020 dell'Unione Europea

(https://www.cem-wave.eu/), ENEA-TEMAF si è occupata dello sviluppo dell'interfaccia in carbonio pirolitico (Py-C) fibra matrice mediante tecnologia CVI. L'interfaccia è un film sottile, tipicamente di spessore 0.1 -1 μm, di un materiale con bassa resistenza a taglio, depositato tra fibre e matrice la cui funzione principale è di arrestare e/o deflettere le microcricche della matrice. Ha inoltre la funzione di trasferire il carico, come in ogni composito rinforzato con fibre, e può agire anche da barriera diffusiva.

ENEA-TEMAF

ENEA - Laboratorio Tecnologie dei Materiali Faenza

Sito web https://www.faenza.enea.it/

Direttore Claudia Brunori

Data 16/11/2023 pubblicazione

Il Laboratorio accreditato ENEA-TEMAF (Tecnologie dei Materiali Faenza) comprende due unità operative: TEMAF e SAFE.

TEMAF, con sede a Faenza dal 1994, si occupa di R&D di materiali avanzati. Svolge ricerca, sviluppo e trasferimento tecnologico per la sostenibilità e la competitività dei prodotti e dei processi, e innovazione nei settori dei trasporti, della produzione e recupero di energia, della meccanica avanzata, dell'aerospazio, dell'edilizia, del biomedicale e del manifatturiero. In particolare si occupa di:

- R&D di ceramici strutturali e funzionali (monolitici, compositi e rivestimenti) e dei processi di produzione, fino alla fabbricazione di prototipi
- R&D di materiali e tecnologie per l'Additive Manufacturing
- Ingegnerizzazione e trasferimento tecnologico di componenti e processi innovativi
- Caratterizzazione termomeccanica di materiali e qualifica di componenti in condizioni standard e simulanti l'esercizio

SAFE, con sede a Bologna, svolge attività di ricerca e sviluppo per materiali e metodi per la sicurezza sismica:

- Protezione sismica di edifici, patrimonio culturale, edifici strategici e impianti industriali a rischio di incidente rilevante
- · Prevenzione dei rischi naturali
- · Strategie per l'incremento della resilienza
- · Diagnostica non distruttiva
- Telerilevamento e analisi di immagini satellitari Le attività sono svolte all'interno di progetti di ricerca e le specifiche competenze e l'ampia dotazione strumentale rendono possibili servizi altamente qualificati per le imprese e la PA.

